Abstract

An analysis of toroidal plasma compression by a collapsing flux conserver reveals linearly stable scenarios of operation to high compression ratios. The resistive and ideal MHD stability is calculated in full toroidal geometry using the asymptotic matching method in realistic conditions. A time dependent MHD simulation of the compression is conducted to confirm the conservation principles used to calculate the equilibrium states for the analysis. The near edge current profile, controlled by toroidal field ramping during compression, is shown to be critical to stability due to coupling between poloidal components of the least stable mode. Two cases with slight differences in edge current are examined, one with a stable corridor to high compression and one without.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.