Abstract

By Auslander's algebraic McKay correspondence, the stable category of Cohen-Macaulay modules over a simple singularity is triangle equivalent to the $1$-cluster category of the path algebra of a Dynkin quiver (i.e., the orbit category of the derived category by the action of the Auslander-Reiten translation). In this paper we give a systematic method to construct a similar type of triangle equivalence between the stable category of Cohen-Macaulay modules over a Gorenstein isolated singularity $R$ and the generalized (higher) cluster category of a finite dimensional algebra $\Lambda$. The key role is played by a bimodule Calabi-Yau algebra, which is the higher Auslander algebra of $R$ as well as the higher preprojective algebra of an extension of $\Lambda$. As a byproduct, we give a triangle equivalence between the stable category of graded Cohen-Macaulay $R$-modules and the derived category of $\Lambda$. Our main results apply in particular to a class of cyclic quotient singularities and to certain toric affine threefolds associated with dimer models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.