Abstract

The molecular design of highly photo-functional polymers with high charge separation efficiency and wide spectral absorption are long term quest for photocatalysis. Herein, we design and develop a series of nitrogen-containing conjugated microporous polymers (N-CMPs) with tailored donor-acceptor units for enhancing charge separation and light harvesting for visible light photocatalytic H2 production. By alternating the substitution position (o-, m-, or p-) and the number of electron donor (carbazole, diphenylamine) and acceptor (cyano) units on the 3D-core structure, a series of N-CMPs with adjustable donor-acceptor (D-A) charge separation efficiencies and tuneable band gaps in the range of 1.64–2.29 eV were obtained, enabling the precise control of the photocatalytic activity at the molecular level. The optimized N-CMP (4-CzPN) exhibits a higher visible light H2 production rate at 2103.2 μmol/h·g and the apparent quantum yield (AQY) at 420 nm reaches 6.4%. Furthermore, the 4-CzPN photocatalyst maintains excellent durability and recycling performance under 25 h continued light irradiation. The outstanding photocatalytic performance of the optimized N-CMPs with D-A structure is attributed to the enhanced polarity and conjugated degree of their core structure, which promotes charge separation and light absorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call