Abstract

Methyl-branched fatty acids (MBFAs) are the dominant form of fatty acid found in many bacteria. They are also found at low levels in a range of foodstuffs, where their presence has been linked to bacterial sources. In this study we evaluated the potential of compound-specific isotope analysis to obtain insights into the stable carbon isotope ratios (delta(13)C values in per thousand) of individual MBFAs and to compare them to the stable carbon isotope ratios of straight-chain fatty acids in food. Due to their low abundance in foodstuffs, the MBFAs were enriched prior to gas chromatography coupled to isotope ratio mass spectrometric (GC-IRMS) analysis. After transesterification, urea complexation was used to suppress the 16:0 and 18:0 methyl esters that were dominant in the samples. Following that, silver-ion high performance liquid chromatography was used to separate the saturated from the unsaturated fatty acids. The resulting solutions of saturated fatty acids obtained from suet, goat's milk, butter, and human milk were studied by GC-IRMS. The delta(13)C values of fatty acids with 12-17 carbons ranged from -25.4 per thousand to -37.6 per thousand. In all samples, MBFAs were most depleted in carbon-13, followed by the odd-chain fatty acids 15:0 and 17:0. 14:0 and 16:0 contained the highest proportions of carbon-13. The results from this study illustrate that MBFAs have distinctive delta(13)C values and must originate from other sources and/or from very different substrates. These measurements support the initial hypothesis that delta(13)C values can be used to attribute MBFAs to particular sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.