Abstract

Northern lampfish (NLF), Stenobrachius leucopsarus (Myctophidae), the dominant pelagic fish taxon of the subarctic North Pacific Ocean, were sampled opportunistically in MOCNESS tows made on continental slope waters of the Gulf of Alaska (GOA) as well as in deep areas of Prince William Sound (PWS) during 1997–2006. The overall mean whole-body lipid-corrected stable carbon isotope value of NLF from the GOA was −21.4 (SD = 0.7) whereas that from PWS was −19.5 (SD = 0.9). This pattern is similar to that observed for late feeding stage Neocalanus cristatus copepods thus confirming a mean cross-shelf carbon stable isotope gradient. As well, there was a statistically significant positive correlation between the considerable temporal variation in the monthly mean carbon stable isotope composition of GOA Neocalanus and GOA NLF ( r = 0.69, P < 0.001). In contrast, NLF nitrogen stable isotope values were bi-modal with most data fitting the upper mode value of ∼+11.5. NLF nitrogen stable isotope values are a better indicator of trophic level or food chain length whereas carbon stable isotopes reflect organic carbon production. The carbon stable isotope values of NLF, measured in May, were positively correlated to marine survival rate of PWS hatchery salmon cohorts entering the marine environment the same year ( r = 0.84, P < 0.001). The carbon stable isotope values for Neocalanus in May were also positively correlated to salmon marine survival ( r = 0.82, P < 0.001). Processes thus manifested through the carbon stable isotope value of biota from the continental slope more closely predicted marine survival rate than that of the salmon themselves. The incipient relationships suggested by the correlations are consistent with the hypothesis that exchange between coastal and oceanic waters in the study area is driven by meso-scale eddies. These eddies facilitate the occurrence of slope phytoplankton blooms as well as drive oceanic zooplankton subsidies into coastal waters. The strong as well as more significant correlations of salmon marine survival rate to NLF as well as slope Neocalanus carbon stable isotope values point to processes taking place at the slope (i.e., interactions driven by meso-scale eddies when at the edge of the shelf) as being the driving force to inter-annual variability in the coastal Gulf of Alaska study area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call