Abstract

AbstractAverage heat and momentum fluxes observed by a network of surface stations during the Hudson Valley Ambient Meteorology Study (HVAMS) were found as functions of a spatially representative bulk Richardson number Ribr. Preferential sites were identified for the occurrence of strong turbulence under mesoscale stability conditions common to all stations. Locally sensed turbulence intermittency depends on the mesoscale flow stability. Nearly continuous turbulence with few long-lived intermittent events occurs when Ribr < Ricr, the critical gradient Richardson number. Less-continuous mixing associated with a larger number of events occurs when Ricr < Ribr < 5, with the weakest turbulence and fewer events observed for Ribr ≫ Ricr. It was found that the need to allow for extra mixing above the conventional critical bulk Richardson number in numerical weather prediction models is primarily a consequence of spatial averaging in a heterogeneous landscape and is secondarily the result of turbulence above Ricr at locations with “nonideal fetch.”

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call