Abstract
Let E/F be an unramified cyclic extension of local non-archimedean fields, G a connected reductive group over F, K(F) (resp. K(E)) a hyper-special maximal compact subgroup of G(F) (resp. G(E)), and H(F) (resp. H(E)) the Hecke convolution algebra of compactly-supported complex-valued K(F) (resp. G(E))-biinvariant functions on G(F) (resp. G(E)). Then the theory of the Satake transform defines (see § 2) a natural homomorphism H(E) → H(F), θ→f. There is a norm map N from the set of stable twisted conjugacy classes in G(E) to the set of stable conjugacy classes in G(F); it is an injection (see [Ko]). Let Ω‱(x, f) denote the stable orbital integral of f in H(F) at the class x, and Ω‱(y, θ) the stable twisted orbital integral of θ in H(E) at the class y.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.