Abstract
Abstract Low-rank matrix estimation plays a key role in many scientific and engineering tasks, including collaborative filtering and image denoising. Low-rank procedures are often motivated by the statistical model where we observe a noisy matrix drawn from some distribution with expectation assumed to have a low-rank representation; the statistical goal is then to recover the signal from the noisy data. Given this setup, we develop a framework for low-rank matrix estimation that allows us to transform noise models into regularization schemes via a simple parametric bootstrap. Effectively, our procedure seeks an autoencoding basis for the observed matrix that is robust with respect to the specified noise model. In the simplest case, with an isotropic noise model, our procedure is equivalent to a classical singular value shrinkage estimator. For non-isotropic noise models, however, our method does not reduce to singular value shrinkage, and instead yields new estimators that perform well in experiments. Moreover, by iterating our stable autoencoding scheme, we can automatically generate low-rank estimates without specifying the target rank as a tuning parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.