Abstract

Highly oscillatory integrals, having amplitudes with algebraic (or logarithmic) endpoint singularities, are considered. An integral of this kind is first transformed into a regular oscillatory integral over an unbounded interval. After applying the method of finite sections, a composite modified Filon–Clenshaw–Curtis rule, recently developed by the author, is applied on it. By this strategy the original integral can be computed in a more stable manner, while the convergence orders of the composite Filon–Clenshaw–Curtis rule are preserved. By introducing the concept of an oscillation subinterval, we propose algorithms, which employ composite Filon–Clenshaw–Curtis rules on rather small intervals. The integral outside the oscillation subinterval is non-oscillatory, so it can be computed by traditional quadrature rules for regular integrals, e.g. the Gaussian ones. We present several numerical examples, which illustrate the accuracy of the algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.