Abstract
For the Cauchy problem for the nonlinear wave equation with nonlinear damping and source terms, we define stable and unstable sets for the initial data. We prove that if during the evolution the solution enters into the stable set, the solution is global and we are able to estimate the decay rate of the energy. If during the evolution the solution enters into the unstable set, the solution blows up in finite time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.