Abstract
Significance: Alongside well-characterized permanent multimeric enzymes and multienzyme complexes, relatively unstable transient enzyme-enzyme assemblies, including metabolons, provide an important mechanism for the regulation of energy and redox metabolism. Critical Issues: Despite the fact that enzyme-enzyme assemblies have been proposed for many decades and experimentally analyzed for at least 40 years, there are very few pathways for which unequivocal evidence for the presence of metabolite channeling, the most frequently evoked reason for their formation, has been provided. Further, in contrast to the stronger, permanent interactions for which a deep understanding of the subunit interface exists, the mechanism(s) underlying transient enzyme-enzyme interactions remain poorly studied. Recent Advances: The widespread adoption of proteomic and cell biological approaches to characterize protein-protein interaction is defining an ever-increasing number of enzyme-enzyme assemblies as well as enzyme-protein interactions that likely identify factors which stabilize such complexes. Moreover, the use of microfluidic technologies provided compelling support of a role for substrate-specific chemotaxis in complex assemblies. Future Directions: Embracing current and developing technologies should render the delineation of metabolons from other enzyme-enzyme complexes more facile. In parallel, attempts to confirm that the findings reported in microfluidic systems are, indeed, representative of the cellular situation will be critical to understanding the physiological circumstances requiring and evoking dynamic changes in the levels of the various transient enzyme-enzyme assemblies of the cell. Antioxid. Redox Signal. 35, 788-807.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.