Abstract

In this paper we present and compare two unconditionally energy stable finite-difference schemes for the phase field crystal equation. The first is a one-step scheme based on a convex splitting of a discrete energy by Wise et al. [S.M. Wise, C. Wang, J.S. Lowengrub, An energy stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., in press]. In this scheme, which is first order in time and second order in space, the discrete energy is non-increasing for any time step. The second scheme we consider is a new, fully second-order two-step algorithm. In the new scheme, the discrete energy is bounded by its initial value for any time step. In both methods, the equations at the implicit time level are nonlinear but represent the gradients of strictly convex functions and are thus uniquely solvable, regardless of time step-size. We solve the nonlinear equations using an efficient nonlinear multigrid method. Numerical simulations are presented and confirm the stability, efficiency and accuracy of the schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.