Abstract

Laser lighting is considered as a next-generation high-power lighting due to its high-brightness, directional emission, and quasi-point source. However, thermally stable color converter is an essential requirement for white laser diodes (LDs). Herein, we proposed a stable and efficient phosphor-in-glass (PiG) in which YAG:Ce3+ and MFG:Mn4+ phosphors were embedded into tellurite glass matrixes. The glass matrixes with low-melting temperature and high refractive index were prepared by designing their composition. The luminescence of YAG:Ce3+ PiGs was adjusted by controlling phosphor thickness. Aiming to compensate for red emission, multi-color PiGs were realized by stacking MFG:Mn4+ layers on YAG:Ce3+ layer. The phosphor crystals are chemically stable and maintain intact in the glass matrix. Furthermore, white LDs were fabricated by combining the PiGs with blue LDs. As the phosphor thickness increases, the chromaticity of white LDs shifts from cool to warm white, and the white LDs exhibit excellent thermal stability under different excitation powers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call