Abstract

Expanded polytetrafluoroethylene (ePTFE) is widely used in clinical applications, such as in the manufacture of blood-contacting implantable devices, owing to its flexibility, biostability, and non-adhesiveness. Modification with peptides is an effective strategy to further improve the ePTFE function. However, the chemical stability of PTFE makes it difficult to modify with peptides. In this study, we reported a simple method for the dense and stable coating of biofunctional peptides on the ePTFE surface through the anchor sequence, Tyr-Lys-Tyr-Lys-Tyr-Lys (YK3). A peptide (YK3-LDV) incorporating the YK3 anchor and a ligand sequence for α4β1 integrin, Leu-Asp-Val (LDV), was successfully coated on ePTFE grafts through one-pot oxidation. The peptide layer constructed via YK3-LDV coating on ePTFE was stable and resistant to extensive washing by aqueous solutions of highly concentrated salts and surfactants. YK3-LDV coating promoted the in vitro adhesion of endothelial cells to ePTFE. Furthermore, YK3-LDV coating accelerated the in vivo formation of neointima-like tissue in a rat model with an ePTFE patch implanted into the carotid artery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call