Abstract
A time stable discretization is derived for the second-order wave equation with discontinuous coefficients. The discontinuity corresponds to inhomogeneity in the underlying medium and is treated by splitting the domain. Each (homogeneous) sub domain is discretized using narrow-diagonal summation by parts operators and, then, patched to its neighbors by using a penalty method, leading to fully explicit time integration. This discretization yields a time stable and efficient scheme. The analysis is verified by numerical simulations in one-dimension using high-order finite difference discretizations, and in three-dimensions using an unstructured finite volume discretization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.