Abstract

High order finite difference approximations are derived for a onedimensional model of the shifted wave equation written in second-order form. The domain is discretized using fully compatible summation by parts operators and the boundary conditions are imposed using a penalty method, leading to fully explicit time integration. This discretization yields a strictly stable and efficient scheme. The analysis is verified by numerical simulations in one-dimension. The present study is the first step towards a strictly stable simulation of the second-order formulation of Einstein’s equations in three spatial dimensions. AMS subject classifications: 35L05, 35L20, 65N06, 65N12, 83C05

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.