Abstract

With the advent of quantum technologies comes the requirement of building quantum components able to store energy to be used whenever necessary, i.e., quantum batteries. In this paper we exploit an adiabatic protocol to ensure a stable charged state of a three-level quantum battery which allows one to avoid the spontaneous discharging regime. We study the effects of the most relevant sources of noise on the charging process, and, as an experimental proposal, we discuss superconducting transmon qubits. In addition we study the self-discharging of our quantum battery where it is shown that spectrum engineering can be used to delay such phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.