Abstract
Based on the Lyapunov synthesis approach, several adaptive neural control schemes have been developed during the last few years. So far, these schemes have been applied only to simple classes of nonlinear systems. This paper develops a design methodology that expands the class of nonlinear systems that adaptive neural control schemes can be applied to and, also, relaxes some of the restrictive assumptions that are usually made. One such assumption is the requirement of a known bound on the network reconstruction error. The overall adaptive scheme is shown to guarantee semi-global uniform ultimate boundedness. The proposed feedback control law is a smooth function of the state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.