Abstract

Recently, stable direct and indirect adaptive controllers have been presented which use Takagi-Sugeno fuzzy systems, conventional fuzzy systems, or a class of neural networks to provide asymptotic tracking of a reference signal for a class of continuous-time nonlinear plants with poorly understood dynamics. The indirect adaptive scheme allows for the inclusion of a priori knowledge about the plant dynamics in terms of exact mathematical equations or linguistics while the direct adaptive scheme allows for the incorporation of such a priori knowledge in specifying the controller. In this paper, the performance of these indirect and direct adaptive schemes is demonstrated through the longitudinal control of an automobile in an automated highway system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.