Abstract

A probability-measure-preserving action of a countable group is called stable if its transformation-groupoid absorbs the ergodic hyperfinite equivalence relation of type II_1 under direct product. We show that for a countable group G and its central subgroup C, if G/C has a stable action, then so does G. Combining a previous result of the author, we obtain a characterization of a central extension having a stable action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.