Abstract

We study the effects of spin-orbit coupling (SOC) on the large-U Hubbard model on anisotropic triangular lattice at half-filling using the Schwinger-boson method. We find that the SOC will in general lead to a zero temperature condensation of the Schwinger bosons with a single condensation momentum. As a consequence, the spin-spin correlation vanishes along the z-axis but develops in the $x$-$y$ plane, with the ordering wave vector being dramatically dependent on the SOC. Moreover, the phase boundary of the magnetic ordered state extends to the region of large spatial anisotropy with increased condensation density, demonstrating that the spiral order is always stabilized by the SOC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.