Abstract

The intensity of an electromagnetic wave interacting self-consistently with a beam of charged particles as in a free electron laser, displays large oscillations due to an aggregate of particles, called the macro-particle. In this article, we propose a strategy to stabilize the intensity by re-shaping the macro-particle. This strategy involves the study of the linear stability (using the residue method) of selected periodic orbits of a mean-field model. As parameters of an additional perturbation are varied, bifurcations occur in the system which have drastic effect on the modification of the self-consistent dynamics, and in particular, of the macro-particle. We show how to obtain an appropriate tuning of the parameters which is able to strongly decrease the oscillations of the intensity without reducing its mean-value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.