Abstract

We propose a superconducting circuit-atom hybrid, where the Rabi oscillation of single excess Cooper pair in the island is stabilized via the common atomic clock technique. The noise in the superconducting circuit is mapped onto the voltage source which biases the Cooper-pair box via an inductor and a gate capacitor. The fast fluctuations of the gate charge are significantly suppressed by an inductor–capacitor resonator, leading to a long-relaxation-time Rabi oscillation. More importantly, the residual low-frequency fluctuations are further reduced by using the general feedback-control method, in which the voltage bias is stabilized via continuously measuring the dc-Stark-shift-induced atomic Ramsey signal. The stability and coherence time of the resulting charge-qubit Rabi oscillation are both enhanced. The principal structure of this Cooper-pair-box oscillator is studied in detail.

Highlights

  • Owing to the features of flexibility, tunability, and scalability [1,2,3,4], superconducting circuits with Josephson junctions show the prospect for the eventual implementation of a quantum computer

  • Choosing the atomic transition between two long-lived electronic states as the reference leads to an ultrastable microwave or optical oscillator whose frequency is determined by nature, i.e., atomic clocks [19]

  • We only focus on the Rabi oscillation of the charge qubit with Ng0 = Nint + 1 2

Read more

Summary

February 2018

Pair in the island is stabilized via the common atomic clock technique. The noise in the superconducting circuit is mapped onto the voltage source which biases the Cooper-pair box via an inductor and a gate capacitor. The fast fluctuations of the gate charge are significantly suppressed by an inductor–capacitor resonator, leading to a long-relaxation-time Rabi oscillation. The residual low-frequency fluctuations are further reduced by using the general feedback-control method, in which the voltage bias is stabilized via continuously measuring the dc-Stark-shift-induced atomic Ramsey signal. The stability and coherence time of the resulting charge-qubit Rabi oscillation are both enhanced. The principal structure of this Cooper-pair-box oscillator is studied in detail

Introduction
Modified charge qubit
Rabi and Ramsey oscillations of charge qubit
Stabilizing Rabi oscillator via the atomic clock technique
Stability and coherence time
Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.