Abstract

Polypropylene fiber, a cheap source of nitrogen-doped carbon, is introduced to design robust nitrogen-doped carbon-encapsulated small Pt nanocrystals with Pt and nitrogen-carbon double-active centers toward oxygen reduction reaction (ORR). Ascribed to the separation effect of the polypropylene fiber, even suffering from a high-temperature carbonization treatment at 720 °C for 90 min, the polypropylene fiber-derived carbon-encapsulated Pt nanocrystal maintains a small particle size (3 nm diameter on average). As expected, its ORR mass activity is up to 116.5 mA/mg at 0.9 V. After 8000 cycles, the half-wave potential of the prepared catalyst declines only by 14 mV compared with 43 mV for the commercial Pt/C catalyst. The significantly improved electrochemical properties of the as-prepared catalyst areresulted from the nitrogen-doped carbon-encapsulated Pt nanocrystal structure,whichis benefited to adsorption and activation of oxygen due to the presence of nitrogen-doped carbon asthe important active site for ORR besides Pt metal. In addition, the migration, aggregation, and growth of Pt nanoparticles are prohibited in terms of the outer nitrogen-doped carbon protection layer, greatly enhancing the stability of the catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.