Abstract
A new adaptive predictive controller for constrained linear systems is presented. The main feature of the proposed controller is the partition of the input in two components. The first part is used to persistently excite the system, in order to guarantee accurate and convergent parameter estimates in a deterministic framework. An MPC-inspired receding horizon optimization problem is developed to achieve the required excitation in a manner that is optimal for the plant. The remaining control action is employed by a conventional tube MPC controller to regulate the plant in the presence of parametric uncertainty and the excitation generated for estimation purposes. Constraint satisfaction, robust exponential stability, and convergence of the estimates are guaranteed under design conditions mildly more demanding than that of standard MPC implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.