Abstract

This paper is mostly concerned with the application of connectionist architectures for fast on-line learning of robot dynamic uncertainties used at the executive hierarchical control level in robot contact tasks. The connectionist structures are integrated in non-learning control laws for contact tasks which enable stabilization and good tracking performance of position and force. It has been shown that the problem of tracking a specified reference trajectory and specified force profile with a present quality of their transient response can be efficiently solved by means of the application of a four-layer perceptron. A four-layer perceptron is part of a hybrid learning control algorithm through the process of synchronous training which uses fast learning rules and available sensor information in order to improve robotic performance progressively in the minimum possible number of learning epochs. Some simulation results of the deburring process with robot MANUTEC r3 are shown to verify effectiveness of the proposed control learning algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.