Abstract

It is generally believed that the spherical domains self-assembled from AB-type block copolymers are composed of the minority A blocks with a volume fraction of fA < 1/2. Breaking this generic rule so that the spherical domains are formed by the majority A blocks (fA > 1/2) requires mechanisms to drastically expand the stable region of spherical packing phases. Self-consistent field theory predicts that dendron-like AB-type block copolymers, composed of G - 1 generations of A blocks connected with the outermost generation of B blocks, exhibit a stable region of spherical packing phases extending to fA ∼ 0.7. The extremely expanded spherical regions shed light on the mechanisms governing the self-assembly of amphiphilic macromolecules, as well as provide opportunities to engineer complex spherical packing phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.