Abstract

Perovskite solar cells suffer from poor reproducibility due to the degradation of perovskite precursor solution. Herein, we report an effective precursor stabilization strategy via incorporating 3-hydrazinobenzoic acid (3-HBA) containing carboxyl (-COOH) and hydrazine (-NHNH2 ) functional groups as stabilizer. The oxidation of I- , deprotonation of organic cations and amine-cation reaction are the main causes of the degradation of mixed organic cation perovskite precursor solution. The -NHNH2 can reduce I2 defects back to I- and thus suppress the oxidation of I- , while the H+ generated by -COOH can inhibit the deprotonation of organic cations and subsequent amine-cation reaction. The above degradation reactions are simultaneously inhibited by the synergy of functional groups. The inverted device achieves an efficiency of 23.5 % (certified efficiency of 23.3 %) with an excellent operational stability, retaining 94 % of the initial efficiency after maximum power point tracking for 601 hours.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call