Abstract
Both hydrogen bonding (HB) and halogen bonding (XB) are essentially electrostatic interactions, but whereas hydrogen bonding has a well-documented record of stabilizing unstable anions, little is known about halogen bonding's ability to do so. Herein, we present a combined anion photoelectron spectroscopic and density functional theory study of the halogen bond-stabilization of the pyrazine (Pz) anion, an unstable anion in isolation due to its neutral counterpart having a negative electron affinity (EA). The halogen bond formed between the σ-hole on bromobenzene (BrPh) and the lone pair(s) of Pz significantly lowers the energies of the Pz(BrPh)1- and Pz(BrPh)2- anions relative to the neutral molecule, resulting in the emergence of a positive EA for the neutral complexes. As seen through its charge distribution and electrostatic potential analyses, the negative charge on Pz- is diluted due to the XB. Thermodynamics reveals that the low temperature of the supersonic expansion plays a key role in forming these complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.