Abstract
We study open quantum systems whose evolution is governed by a master equation of Kossakowski-Gorini-Sudarshan-Lindblad type and give a characterization of the convex set of steady states of such systems based on the generalized Bloch representation. It is shown that an isolated steady state of the Bloch equation cannot be a center, i.e., that the existence of a unique steady state implies attractivity and global asymptotic stability. Necessary and sufficient conditions for the existence of a unique steady state are derived and applied to different physical models including two- and four-level atoms, (truncated) harmonic oscillators, composite and decomposable systems. It is shown how these criteria could be exploited in principle for quantum reservoir engineeing via coherent control and direct feedback to stabilize the system to a desired steady state. We also discuss the question of limit points of the dynamics. Despite the non-existence of isolated centers, open quantum systems can have nontrivial invariant sets. These invariant sets are center manifolds that arise when the Bloch superoperator has purely imaginary eigenvalues and are closely related to decoherence-free subspaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.