Abstract

Based on the invariance principle of differential equations a simple, systematic, and rigorous feedback scheme with the variable feedback strength is proposed to stabilize nonlinearly finite-dimensional chaotic systems without any prior analytical knowledge of the systems. Especially the method may be used to control near-nonhyperbolic chaotic systems, which, although arising naturally from models in astrophysics to those for neurobiology, all Ott-Grebogi-York type methods will fail to stabilize. The technique is successfully used for the famous Hindmarsh-Rose neuron model, the FitzHugh-Rinzel neuron model, and the Rössler hyperchaos system, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call