Abstract
Manipulating coherent twin boundaries (CTBs) opens an avenue to design strong nanostructured materials. However, below a critical TB spacing, these inherently defective CTBs decorated with kink-like steps (abbreviated by kinks) and intersected with grain boundaries (GBs) will suffer from the thermal/mechanical instability, leading to the degradation of material properties. Here, utilizing Cr-segregation at kinks and GBs via a minor (1 at.%) Cr-doping, we report the nanocrystalline-nanotwinned (NNT) Cu-Cr alloy manifests continuous strengthening reaching 1.2 GPa at extremely fine TB spacing of ∼ 2 nm, associated with excellent structural-mechanical stability after high-temperature (0.5Tm of Cu) annealing. The underlying mechanism mainly originates from the highly stabilized defective CTBs controlled by Cr-segregation at kinks and TB-GB junctions, which facilitates the plastic deformation mode transition: from detwinning dislocation nucleation to stacking faults (SFs) accumulation for ultrahigh strength. Under elevated temperature, the stabilized TBs inhibit GB motion and therefore result in enhanced thermal stability of NNT Cu-Cr alloys, which is quantitatively explained via a modified Zenner pinning model. Our findings not only deepen the understanding of deformation mechanisms in nanotwinned metals, but also provide a new perspective to design plainified Cu alloys with high performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.