Abstract

The stabilization of steady states is studied in a modified Lang-Kobayashi model of a semiconductor laser. We show that multiple time-delayed feedback, realized by a Fabry-Perot resonator coupled to the laser, provides a valuable tool for the suppression of unwanted intensity pulsations, and leads to stable continuous-wave operation. The domains of control are calculated in dependence on the feedback strength, delay time (cavity round trip time), memory parameter (mirror reflectivity), latency time, feedback phase, and bandpass filtering. Due to the optical feedback, multistable behavior can also occur in the form of delay-induced intensity pulsations or other modes for certain choices of the control parameters. Control may then still be achieved by slowly ramping the injection current during turn-on.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call