Abstract
The contact resistance stability of isotropically conductive adhesives (ICAs) on non-noble metal surfaces under the 85°C/85% relative humidity (RH) aging test was investigated. Previously, we demonstrated that galvanic corrosion has been shown as the main mechanism of the unstable contact resistance of ICAs on non-noble metal surfaces. A sacrificial anode was introduced into the ICA joint for cathodic protection. Zinc, chromium, and magnesium were employed in the ICA formulations as sacrificial anode materials that have much lower electrode-potential values than the metal pad surface, such as tin or tin-based alloys. The effect of particle sizes and loading levels of sacrificial anode materials were studied. Chromium was not as effective in suppressing corrosion as magnesium or zinc because of its strong tendency to self-passivate. The corrosion potential of ICAs was reduced by half with the addition of zinc and magnesium into the ICA formulation. The addition of zinc and magnesium was very effective in controlling galvanic corrosion that takes place in the ICA joints, resulting in stabilized contact resistance of ICAs on Sn, SnPb, and SnAgCu surfaces during the 85°C/85% RH aging test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.