Abstract

AbstractThe application of Li‐rich layered oxides is hindered by their dramatic capacity and voltage decay on cycling. This work comprehensively studies the mechanistic behaviour of cobalt‐free Li1.2Ni0.2Mn0.6O2 and demonstrates the positive impact of two‐phase Ru doping. A mechanistic transition from the monoclinic to the hexagonal behaviour is found for the structural evolution of Li1.2Ni0.2Mn0.6O2, and the improvement mechanism of Ru doping is understood using the combination of in operando and post‐mortem synchrotron analyses. The two‐phase Ru doping improves the structural reversibility in the first cycle and restrains structural degradation during cycling by stabilizing oxygen (O2−) redox and reducing Mn reduction, thus enabling high structural stability, an extraordinarily stable voltage (decay rate <0.45 mV per cycle), and a high capacity‐retention rate during long‐term cycling. The understanding of the structure‐function relationship of Li1.2Ni0.2Mn0.6O2 sheds light on the selective doping strategy and rational materials design for better‐performance Li‐rich layered oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.