Abstract

AbstractThe fragile bottom side of perovskite films is demonstrated to be harmful to the efficiency and stability of perovskite solar cells (PSCs) because the carrier extraction and recombination can be significantly influenced by the easily formed strain, voids, and defects on the bottom side. Nevertheless, the bottom side of perovskite films is usually overlooked because it remains a challenge to directly characterize and modify the bottom side. Herein, a facile and effective strategy is reported to stabilize the bottom side via preburying cesium formate (CsFo) into the SnO2 electron transport layer (ETL). It is found that the synergistic effect of cesium cation (Cs+) and formate anion (HCOO−) causes strain relaxation, void elimination, and defects’ reduction, which further facilitate the charge extraction. Consequently, the champion power conversion efficiency (PCE) of formamidinium (FA)‐based PSCs is increased from 23.34% to 24.50%. Meanwhile, the ultraviolet (UV), thermal, and operational stability are also enhanced. Finally, formamidinium–cesium (FACs)‐based PSCs are investigated to confirm the effectiveness of this preburied CsFo strategy, and the optimal device exhibits a champion PCE of 25.03% and a remarkably high fill factor (FF) of 85.65%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call