Abstract

The hydrogen bonding interaction between an amide N-H and the amide N of the preceding residue is prevalent in proline-containing proteins and peptides. However, the N-H⋅⋅⋅N hydrogen bonding interaction is rare in non-prolyl natural peptides due to restricted dihedral angles. Herein, we stabilize this type of interaction in 8-aminoquinoline appended non-prolyl peptides through bifurcated N⋅⋅⋅H⋅⋅⋅N hydrogen bond. The 8-aminoquinoline-incorporated model peptides 2 a-i were designed, synthesized, and the crystal structures of 2 a-c and 2 i were solved. Analysis of crystal data reveals that the amide N-H of aminoquinoline is involved in bifurcated hydrogen bonding interaction with the nitrogen of the preceding amino acid residue and the nitrogen in quinoline. Analysis of crystal packing, Hirshfeld surface and fingerprint plots confirms that the intermolecular O⋅⋅⋅H contacts significantly contribute to stabilizing bifurcated N⋅⋅⋅H⋅⋅⋅N hydrogen bonding interaction. Furthermore, NMR experiments and CD spectroscopy were conducted to examine the preferred conformation in solution, and the data corroborate with the crystal structure conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.