Abstract
This paper highlights the benefits of a feedback linearization local controller and the associated terminal bound constraints (box-type inequalities) in an NMPC (Nonlinear Model Predictive Control) design for a multicopter system. We replace the standard invariant construction for the terminal region of the NMPC design with two sets: i) a $\delta$-invariant set (with $\delta$ the sampling time) which constrains the trajectories to re-enter it periodically, at pre-defined moments of time; ii) a constraint admissible safe set in which the trajectories lie in the remaining time instants. We show that this alternative construction verifies the recursive feasibility and asymptotic stability. Moreover, the additional degrees of freedom and simpler construction show advantages over similar NMPC designs with standard ellipsoidal terminal region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.