Abstract

The access to molecules comprising direct Zn–Zn bonds has become very topical in recent years for various reasons. Low-valent organozinc compounds show remarkable reactivities, and larger Zn–Zn-bonded gas-phase species exhibit a very unusual coexistence of insulating and metallic properties. However, as Zn atoms do not show a high tendency to form clusters in condensed phases, synthetic approaches for generating purely inorganic metalloid Znx units under ambient conditions have been lacking so far. Here we show that the reaction of a highly reductive solid with the nominal composition K5Ga2Bi4 with ZnPh2 at room temperature yields the heterometallic cluster anion [K2Zn20Bi16]6–. A 24-atom polymetallide ring embeds a metalloid {Zn12} unit. Density functional theory calculations reveal multicenter bonding, an essentially zero-valent situation in the cluster center, and weak aromaticity. The heterometallic character, the notable electron-delocalization, and the uncommon nano-architecture points at a high potential for nano-heterocatalysis.

Highlights

  • The access to molecules comprising direct Zn–Zn bonds has become very topical in recent years for various reasons

  • We report on the targeted synthesis of a salt of the heterometallic cluster anion [K2Zn20Bi16]6– (1a), comprising a homoatomic subunit of 12 Zn atoms, and at the same time a large molecular architecture, involving 20 Zn and 16 Bi atoms

  • As shown by quantum chemical investigations, an inner {Zn12} unit in 1a represents a really metalloid zinc cluster, which is held together by four-center bonding exclusively. This unit is embedded in a polymetallide {Zn8Bi16}q− ring (q = 8...14), to which it is connected by three-center and two-center bonds

Read more

Summary

Introduction

The access to molecules comprising direct Zn–Zn bonds has become very topical in recent years for various reasons. Low-valent organozinc compounds show remarkable reactivities, and larger Zn–Zn-bonded gas-phase species exhibit a very unusual coexistence of insulating and metallic properties. Gas-phase studies of zinc clusters that were generated in a magnetron sputter gas aggregation source indicated unusual electronic properties, which reveals the coexistence of insulating and metallic properties[11,12]. This has been a tremendous inspiration for synthetic groups that yearned for the isolation of. 24), that exhibit a clear segregation of the involved atom types Both clusters refer to elemental combinations that are virtually immiscible in the solid state

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.