Abstract
The main goal of this paper is to introduce the notion of stabilizers in \(L\)-algebras and develop stabilizer theory in \(L\)-algebras. In this paper, we introduced the notions of left and right stabilizers and investigated some related properties of them. Then, we discussed the relations among stabilizers, ideal and co-annihilators. Also, we obtained that the set of all ideals of a \(CKL\)-algebra forms a relative pseudo-complemented lattice. In addition, we proved that right stabilizers in \(CKL\)-algebra are ideals. Then by using the right stabilizers we produced a basis for a topology on \(L\)-algebra. We showed that the generated topology by this basis is Baire, connected, locally connected and separable and we investigated the other properties of this topology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.