Abstract
We propose a post-processing method for message-passing (MP) decoding of CSS quantum LDPC codes, called stabilizer-inactivation (SI). It relies on inactivating a set of qubits, supporting a check in the dual code, and then running the MP decoding again. This allows MP decoding to converge outside the inactivated set of qubits, while the error on these is determined by solving a small, constant size, linear system. Compared to the state of the art post-processing method based on ordered statistics decoding (OSD), we show through numerical simulations that MP-SI outperforms MP-OSD for different quantum LDPC code constructions, different MP decoding algorithms, and different MP scheduling strategies, while having a significantly reduced complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.