Abstract

We analyze the hp-version of the streamline-diffusion finite element method (SDFEM) and of the discontinuous Galerkin finite element method (DGFEM) for first-order linear hyperbolic problems. For both methods, we derive new error estimates on general finite element meshes which are sharp in the mesh-width h and in the spectral order p of the method, assuming that the stabilization parameter is O(h/p). For piecewise analytic solutions, exponential convergence is established on quadrilateral meshes. For the DGFEM we admit very general irregular meshes and for the SDFEM we allow meshes which contain hanging nodes. Numerical experiments confirm the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.