Abstract
To ensure time stability of a seventh-order dissipative compact finite difference scheme, fourth-order boundary closures are used near domain boundaries previously. However, this would reduce the global convergence rate to fifth-order only. In this paper, we elevate the boundary closures to sixth-order to achieve seventh-order global accuracy. To keep the improved scheme time stable, the simultaneous approximation terms (SATs) are used to impose boundary conditions weakly. Eigenvalue analysis shows that the improved scheme is time stable. Numerical experiments for linear advection equations and one-dimensional Euler equations are implemented to validate the new scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.