Abstract

The Rayleigh-Taylor instability in the radiation pressure dominated regime of ion acceleration is studied by means of multidimensional particle-in-cell simulations. It is shown that the growth of the long wavelength mode of the instability can be reduced by transverse diffusion of ions coming from the initial subwavelength modulations on the target front surface. Reduction in the growth of the instability keeps the target structure uniform along the transverse direction and opaque to the laser pulse for a longer duration, improving both the final peak energy and the spectral quality of the ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call