Abstract

The metal oxide pillared ordered-mesoporous Co3O4 was investigated to design a stable and superior catalyst for CO hydrogenation into linear hydrocarbons through Fischer–Tropsch Synthesis (FTS) reaction. Enhanced structural stability was observed in ordered-mesoporous Co3O4 even under hydrogen-excess conditions after modification with a metal oxide pillar of Al2O3. The mesoporous Co3O4 was synthesized using a hard template of highly ordered three dimensional mesoporous KIT-6. A small number of metal oxide pillars such as Al2O3, Mn2O4, and SiO2 with 5wt% were subsequently added to the ordered-mesoporous Co3O4 through the incipient wetness impregnation method. The Al2O3-modifed mesoporous Co3O4 catalyst demonstrated superior CO conversion with a stable activity in CO hydrogenation reaction. The enhanced catalytic stability seems to be attributable to the lower mobility of the Al2O3 pillar which formed stronger interactions with the mesoporous Co3O4 inner surfaces. The Al2O3 modification can effectively stabilize ordered-mesoporous structures of Co3O4 by acting as an ordered mesoporous channel reactor and enhancing the transport rate of hydrocarbons formed during FTS reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call