Abstract
A thorough analysis of stochastically stabilized Hermitian one-matrix models for two-dimensional quantum gravity at all its (2, 2k − 1) multicritical points is made. It is stressed that only the zero fermion sector of the supersymmetric Hamiltonian, i.e. the forward Fokker–Planck Hamiltonian, is relevant for the analysis of bosonic matter coupled to two-dimensional gravity. Therefore, supersymmetry breaking is not the physical mechanism that creates nonperturbative effects in the case of points of even multicriticality k. Nonperturbative effects in the string coupling constant g str result in a loss of any explicit relation to the KdV hierarchy equations in the latter case, while maintaining the perturbative genus expansion. As a by-product of our analysis it is explicitly proved that polynomials orthogonal relative to an arbitrary weight exp (−βV (x)) along the whole real line obey a Hartree–Fock equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.