Abstract

Human cystatinC (HCC) binds and inhibits all types of cysteine proteases from the papain family, including cathepsins (a group of enzymes that participate in a variety of physiological processes),which are some of its natural targets. The affinities of diverse proteases for HCC, expressed as equilibrium binding constants (Kb), range from 106 to 1014M-1. Isothermal titration calorimetry (ITC) is one of the most useful techniques to characterize the thermodynamics of molecular associations, making it possible to dissect the binding free energy into its enthalpic and entropic components. This information, together with the structural changes that occur during the different associations, could enable better understanding of the molecular basis of affinity. Notwithstanding the high sensitivity of modern calorimeters, ITC requires protein concentrations in at least the 10-100μM range to obtain reliable data, and it is known that HCC forms oligomers in this concentration range. We present herein a comparative study of the structural, thermal stability, and oligomerization properties of HCC and its stabilized variant (sHCC) L47C/G69C (which possesses an additional disulfide bridge) as well as their binding thermodynamics to the protease chymopapain, analyzed by ITC. The results show that, because sHCC remains monomeric, it is a better reporter than wild-type HCC to characterize the thermodynamics of binding to cysteine proteases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.