Abstract

In this paper, a new stabilized finite element method based on two local Gauss integrations is considered for the two-dimensional viscoelastic fluid motion equations, arising from the Oldroyd model for the non-Newtonian fluid flows. This new stabilized method presents attractive features such as being parameter-free, or being defined for non-edge-based data structures. It confirms that the lowest equal-order P 1???P 1 triangle element and Q 1???Q 1 quadrilateral element are compatible. Moreover, the long time stabilities and error estimates for the velocity in H 1-norm and for the pressure in L 2-norm are obtained. Finally, some numerical experiments are performed, which show that the new method is applied to this model successfully and can save lots of computational cost compared with the standard ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.