Abstract

We develop a novel cut discontinuous Galerkin (CutDG) method for stationary advection–reaction problems on surfaces embedded in Rd. The CutDG method is based on embedding the surface into a full-dimensional background mesh and using the associated discontinuous piecewise polynomials of order k as test and trial functions. As the surface can cut through the mesh in an arbitrary fashion, we design a suitable stabilization that enables us to establish inf-sup stability, a priori error estimates, and condition number estimates using an augmented streamline-diffusion norm. The resulting CutDG formulation is geometrically robust in the sense that all derived theoretical results hold with constants independent of any particular cut configuration. Numerical examples support our theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.