Abstract

This paper considers packing and cutting problems in which a packing/cutting pattern is constrained independently in two or more dimensions. Examples are restrictions with respect to weight, length, and value. We present branch-and-price algorithms to solve these vector packing problems (VPPs) exactly. The underlying column-generation procedure uses an extended master program that is stabilized by (deep) dual-optimal inequalities. While some inequalities are added to the master program right from the beginning (static version), other violated dual-optimal inequalities are added dynamically. The column-generation subproblem is a multidimensional knapsack problem, either binary, bounded, or unbounded depending on the specific master problem formulation. Its fast resolution is decisive for the overall performance of the branch-and-price algorithm. In order to provide a generic but still efficient solution approach for the subproblem, we formulate it as a shortest path problem with resource constraints (SPPRC), yielding the following advantages: (i) Violated dual-optimal inequalities can be identified as a by-product of the SPPRC labeling approach and thus be added dynamically; (ii) branching decisions can be implemented into the subproblem without deteriorating its resolution process; and (iii) larger instances of higher-dimensional VPPs can be tackled with branch-and-price for the first time. Extensive computational results show that our branch-and-price algorithms are capable of solving VPP benchmark instances effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.